botorch.posteriors¶
botorch.posteriors.posterior¶
Abstract base module for all botorch posteriors.
Posterior¶
- 
class 
botorch.posteriors.posterior.Posterior[source]¶ Abstract base class for botorch posteriors.
- 
device¶ The torch device of the posterior.
Return type: device
- 
dtype¶ The torch dtype of the posterior.
Return type: dtype
- 
event_shape¶ The event shape (i.e. the shape of a single sample).
Return type: Size
- 
mean¶ The mean of the posterior as a (b) x n x o-dim Tensor.
Return type: Tensor
- 
rsample(sample_shape=None, base_samples=None)[source]¶ Sample from the posterior (with gradients).
Parameters: - sample_shape (
Optional[Size]) – A torch.Size object specifying the sample shape. To draw n samples, set to torch.Size([n]). To draw b batches of n samples each, set to torch.Size([b, n]). - base_samples (
Optional[Tensor]) – An (optional) Tensor of N(0, I) base samples of appropriate dimension, typically obtained from a Sampler. This is used for deterministic optimization. 
Return type: TensorReturns: A sample_shape x event-dim Tensor of samples from the posterior.
- sample_shape (
 
- 
sample(sample_shape=None, base_samples=None)[source]¶ Sample from the posterior (without gradients).
This is a simple wrapper calling rsample using with torch.no_grad().
Parameters: - sample_shape (
Optional[Size]) – A torch.Size object specifying the sample shape. To draw n samples, set to torch.Size([n]). To draw b batches of n samples each, set to torch.Size([b, n]). - base_samples (
Optional[Tensor]) – An (optional) Tensor of N(0, I) base samples of appropriate dimension, typically obtained from a Sampler object. This is used for deterministic optimization. 
Return type: TensorReturns: A sample_shape x event_shape-dim Tensor of samples from the posterior.
- sample_shape (
 
- 
variance¶ The variance of the posterior as a (b) x n x o-dim Tensor.
Return type: Tensor
- 
 
botorch.posteriors.gpytorch¶
Posterior Module to be used with GPyTorch models.
GPyTorchPosterior¶
- 
class 
botorch.posteriors.gpytorch.GPyTorchPosterior(mvn)[source]¶ A posterior based on GPyTorch’s multi-variate Normal distributions.
A posterior based on GPyTorch’s multi-variate Normal distributions.
Parameters: mvn ( MultivariateNormal) – A GPyTorch MultivariateNormal (single-output case) or MultitaskMultivariateNormal (multi-output case).- 
device¶ The torch device of the posterior.
Return type: device
- 
dtype¶ The torch dtype of the posterior.
Return type: dtype
- 
event_shape¶ The event shape (i.e. the shape of a single sample) of the posterior.
Return type: Size
- 
mean¶ The posterior mean.
Return type: Tensor
- 
rsample(sample_shape=None, base_samples=None)[source]¶ Sample from the posterior (with gradients).
Parameters: - sample_shape (
Optional[Size]) – A torch.Size object specifying the sample shape. To draw n samples, set to torch.Size([n]). To draw b batches of n samples each, set to torch.Size([b, n]). - base_samples (
Optional[Tensor]) – An (optional) Tensor of N(0, I) base samples of appropriate dimension, typically obtained from a Sampler. This is used for deterministic optimization. 
Return type: TensorReturns: A sample_shape x event_shape-dim Tensor of samples from the posterior.
- sample_shape (
 
- 
variance¶ The posterior variance.
Return type: Tensor
- 
 
