botorch.distributions¶
- 
class botorch.distributions.Kumaraswamy(concentration1, concentration0, validate_args=False)[source]¶
- Bases: - torch.distributions.transformed_distribution.TransformedDistribution- A Kumaraswamy distribution. - Example: - >>> m = Kumaraswamy(torch.Tensor([1.0]), torch.Tensor([1.0])) >>> m.sample() # sample from a Kumaraswamy distribution tensor([ 0.1729]) - Parameters
- concentration1 ( - Union[- float,- Tensor]) – 1st concentration parameter of the distribution (often referred to as alpha)
- concentration0 ( - Union[- float,- Tensor]) – 2nd concentration parameter of the distribution (often referred to as beta)
 
 - 
arg_constraints= {'concentration0': GreaterThan(lower_bound=0.0), 'concentration1': GreaterThan(lower_bound=0.0)}¶
 - 
support= Interval(lower_bound=0.0, upper_bound=1.0)¶
 - 
has_rsample= True¶
 - 
expand(batch_shape, _instance=None)[source]¶
- Returns a new distribution instance (or populates an existing instance provided by a derived class) with batch dimensions expanded to batch_shape. This method calls - expandon the distribution’s parameters. As such, this does not allocate new memory for the expanded distribution instance. Additionally, this does not repeat any args checking or parameter broadcasting in __init__.py, when an instance is first created.- Parameters
- batch_shape (torch.Size) – the desired expanded size. 
- _instance ( - Optional[- Kumaraswamy]) – new instance provided by subclasses that need to override .expand.
 
- Return type
- Returns
- New distribution instance with batch dimensions expanded to batch_size. 
 
 - 
property mean¶
- Returns the mean of the distribution. - Return type
- None
 
 - 
property variance¶
- Returns the variance of the distribution. - Return type
- None
 
 
Distributions¶
Probability Distributions.
This is modified from https://github.com/probtorch/pytorch/pull/143 and https://github.com/tensorflow/probability/blob/v0.11.1/ tensorflow_probability/python/distributions/kumaraswamy.py.
TODO: replace with PyTorch version once the PR is up and landed.
- 
class botorch.distributions.distributions.Kumaraswamy(concentration1, concentration0, validate_args=False)[source]¶
- Bases: - torch.distributions.transformed_distribution.TransformedDistribution- A Kumaraswamy distribution. - Example: - >>> m = Kumaraswamy(torch.Tensor([1.0]), torch.Tensor([1.0])) >>> m.sample() # sample from a Kumaraswamy distribution tensor([ 0.1729]) - Parameters
- concentration1 ( - Union[- float,- Tensor]) – 1st concentration parameter of the distribution (often referred to as alpha)
- concentration0 ( - Union[- float,- Tensor]) – 2nd concentration parameter of the distribution (often referred to as beta)
 
 - 
arg_constraints= {'concentration0': GreaterThan(lower_bound=0.0), 'concentration1': GreaterThan(lower_bound=0.0)}¶
 - 
support= Interval(lower_bound=0.0, upper_bound=1.0)¶
 - 
has_rsample= True¶
 - 
expand(batch_shape, _instance=None)[source]¶
- Returns a new distribution instance (or populates an existing instance provided by a derived class) with batch dimensions expanded to batch_shape. This method calls - expandon the distribution’s parameters. As such, this does not allocate new memory for the expanded distribution instance. Additionally, this does not repeat any args checking or parameter broadcasting in __init__.py, when an instance is first created.- Parameters
- batch_shape (torch.Size) – the desired expanded size. 
- _instance ( - Optional[- Kumaraswamy]) – new instance provided by subclasses that need to override .expand.
 
- Return type
- Returns
- New distribution instance with batch dimensions expanded to batch_size. 
 
 - 
property mean¶
- Returns the mean of the distribution. - Return type
- None
 
 - 
property variance¶
- Returns the variance of the distribution. - Return type
- None
 
 
