botorch.sampling¶
Monte-Carlo Samplers¶
Sampler modules to be used with MC-evaluated acquisition functions.
- class botorch.sampling.samplers.IIDNormalSampler(num_samples, resample=False, seed=None, collapse_batch_dims=True, batch_range=(0, -2))[source]¶
- Bases: - MCSampler- Sampler for MC base samples using iid N(0,1) samples. - Example - >>> sampler = IIDNormalSampler(1000, seed=1234) >>> posterior = model.posterior(test_X) >>> samples = sampler(posterior) - Sampler for MC base samples using iid N(0,1) samples. - Parameters:
- num_samples (int) – The number of samples to use. 
- resample (bool) – If True, re-draw samples in each forward evaluation - this results in stochastic acquisition functions (and thus should not be used with deterministic optimization algorithms). 
- seed (Optional[int]) – The seed for the RNG. If omitted, use a random seed. 
- collapse_batch_dims (bool) – If True, collapse the t-batch dimensions to size 1. This is useful for preventing sampling variance across t-batches. 
- batch_range (Tuple[int, int]) – The range of t-batch dimensions in the base_sample_shape used by collapse_batch_dims. The t-batch dims are batch_range[0]:batch_range[1]. By default, this is (0, -2), for the case where the non-batch dimensions are -2 (q) and -1 (d) and all dims in the front are t-batch dims. 
 
 - training: bool¶
 
- class botorch.sampling.samplers.SobolQMCNormalSampler(num_samples, resample=False, seed=None, collapse_batch_dims=True, batch_range=(0, -2))[source]¶
- Bases: - MCSampler- Sampler for quasi-MC base samples using Sobol sequences. - Example - >>> sampler = SobolQMCNormalSampler(1024, seed=1234) >>> posterior = model.posterior(test_X) >>> samples = sampler(posterior) - Sampler for quasi-MC base samples using Sobol sequences. - Parameters:
- num_samples (int) – The number of samples to use. As a best practice, use powers of 2. 
- resample (bool) – If True, re-draw samples in each forward evaluation - this results in stochastic acquisition functions (and thus should not be used with deterministic optimization algorithms). 
- seed (Optional[int]) – The seed for the RNG. If omitted, use a random seed. 
- collapse_batch_dims (bool) – If True, collapse the t-batch dimensions to size 1. This is useful for preventing sampling variance across t-batches. 
- batch_range (Tuple[int, int]) – The range of t-batch dimensions in the base_sample_shape used by collapse_batch_dims. The t-batch dims are batch_range[0]:batch_range[1]. By default, this is (0, -2), for the case where the non-batch dimensions are -2 (q) and -1 (d) and all dims in the front are t-batch dims. 
 
 - training: bool¶
 
Pairwise Monte-Carlo Samplers¶
- class botorch.sampling.pairwise_samplers.PairwiseMCSampler(max_num_comparisons=None, seed=None)[source]¶
- Bases: - MCSampler- Abstract class for Pairwise MC Sampler. - This sampler will sample pairwise comparisons. It is to be used together with PairwiseGP and BoTorch acquisition functions (e.g., qKnowledgeGradient) - Parameters:
- max_num_comparisons (int) – Max number of comparisons drawn within samples. If None, use all possible pairwise comparisons 
- seed (int) – The seed for np.random.seed. If omitted, use a random seed. May be overwritten by sibling classes or subclasses. 
 
 - forward(posterior)[source]¶
- Draws MC samples from the posterior and make comparisons - Parameters:
- posterior (Posterior) – The Posterior to sample from. The returned samples are expected to have output dimension of 1. 
- Returns:
- Posterior sample pairwise comparisons. 
- Return type:
- Tensor 
 
 - training: bool¶
 
- class botorch.sampling.pairwise_samplers.PairwiseIIDNormalSampler(num_samples, resample=False, seed=None, collapse_batch_dims=True, max_num_comparisons=None)[source]¶
- Bases: - PairwiseMCSampler,- IIDNormalSampler- Parameters:
- num_samples (int) – The number of samples to use. 
- resample (bool) – If True, re-draw samples in each forward evaluation - this results in stochastic acquisition functions (and thus should not be used with deterministic optimization algorithms). 
- seed (Optional[int]) – The seed for the RNG. If omitted, use a random seed. 
- collapse_batch_dims (bool) – If True, collapse the t-batch dimensions to size 1. This is useful for preventing sampling variance across t-batches. 
- max_num_comparisons (int) – Max number of comparisons drawn within samples. If None, use all possible pairwise comparisons. 
 
 - training: bool¶
 
- class botorch.sampling.pairwise_samplers.PairwiseSobolQMCNormalSampler(num_samples, resample=False, seed=None, collapse_batch_dims=True, max_num_comparisons=None)[source]¶
- Bases: - PairwiseMCSampler,- SobolQMCNormalSampler- Parameters:
- num_samples (int) – The number of samples to use. 
- resample (bool) – If True, re-draw samples in each forward evaluation - this results in stochastic acquisition functions (and thus should not be used with deterministic optimization algorithms). 
- seed (Optional[int]) – The seed for the RNG. If omitted, use a random seed. 
- collapse_batch_dims (bool) – If True, collapse the t-batch dimensions to size 1. This is useful for preventing sampling variance across t-batches. 
- max_num_comparisons (int) – Max number of comparisons drawn within samples. If None, use all possible pairwise comparisons. 
 
 - training: bool¶
 
QMC Base Functionality¶
Quasi Monte-Carlo sampling from Normal distributions.
References:
- class botorch.sampling.qmc.NormalQMCEngine(d, seed=None, inv_transform=False)[source]¶
- Bases: - object- Engine for qMC sampling from a Multivariate Normal N(0, I_d). - By default, this implementation uses Box-Muller transformed Sobol samples following pg. 123 in [Pages2018numprob]. To use the inverse transform instead, set inv_transform=True. - Example - >>> engine = NormalQMCEngine(3) >>> samples = engine.draw(16) - Engine for drawing qMC samples from a multivariate normal N(0, I_d). - Parameters:
- d (int) – The dimension of the samples. 
- seed (Optional[int]) – The seed with which to seed the random number generator of the underlying SobolEngine. 
- inv_transform (bool) – If True, use inverse transform instead of Box-Muller. 
 
 - draw(n=1, out=None, dtype=torch.float32)[source]¶
- Draw n qMC samples from the standard Normal. - Parameters:
- n (int) – The number of samples to draw. As a best practice, use powers of 2. 
- out (Optional[Tensor]) – An option output tensor. If provided, draws are put into this tensor, and the function returns None. 
- dtype (dtype) – The desired torch data type (ignored if out is provided). 
 
- Returns:
- A n x d tensor of samples if out=None and None otherwise. 
- Return type:
- Optional[Tensor] 
 
 
- class botorch.sampling.qmc.MultivariateNormalQMCEngine(mean, cov, seed=None, inv_transform=False)[source]¶
- Bases: - object- Engine for qMC sampling from a multivariate Normal N(mu, Sigma). - By default, this implementation uses Box-Muller transformed Sobol samples following pg. 123 in [Pages2018numprob]. To use the inverse transform instead, set inv_transform=True. - Example - >>> mean = torch.tensor([1.0, 2.0]) >>> cov = torch.tensor([[1.0, 0.25], [0.25, 2.0]]) >>> engine = MultivariateNormalQMCEngine(mean, cov) >>> samples = engine.draw(16) - Engine for qMC sampling from a multivariate Normal N(mu, Sigma). - Parameters:
- mean (Tensor) – The mean vector. 
- cov (Tensor) – The covariance matrix. 
- seed (Optional[int]) – The seed with which to seed the random number generator of the underlying SobolEngine. 
- inv_transform (bool) – If True, use inverse transform instead of Box-Muller. 
 
 - draw(n=1, out=None)[source]¶
- Draw n qMC samples from the multivariate Normal. - Parameters:
- n (int) – The number of samples to draw. As a best practice, use powers of 2. 
- out (Optional[Tensor]) – An option output tensor. If provided, draws are put into this tensor, and the function returns None. 
 
- Returns:
- A n x d tensor of samples if out=None and None otherwise. 
- Return type:
- Optional[Tensor] 
 
 
