Source code for botorch.posteriors.transformed
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from typing import Callable, Optional, Tuple
import torch
from botorch.posteriors.posterior import Posterior
from torch import Tensor
[docs]class TransformedPosterior(Posterior):
    r"""A generic transformation of a posterior (implicitly represented)."""
    def __init__(
        self,
        posterior: Posterior,
        sample_transform: Callable[[Tensor], Tensor],
        mean_transform: Optional[Callable[[Tensor, Tensor], Tensor]] = None,
        variance_transform: Optional[Callable[[Tensor, Tensor], Tensor]] = None,
    ) -> None:
        r"""An implicitly represented transformed posterior.
        Args:
            posterior: The posterior object to be transformed.
            sample_transform: A callable applying a sample-level transform to a
                `sample_shape x batch_shape x q x m`-dim tensor of samples from
                the original posterior, returning a tensor of samples of the
                same shape.
            mean_transform: A callable transforming a 2-tuple of mean and
                variance (both of shape `batch_shape x m x o`) of the original
                posterior to the mean of the transformed posterior.
            variance_transform: A callable transforming a 2-tuple of mean and
                variance (both of shape `batch_shape x m x o`) of the original
                posterior to a variance of the transformed posterior.
        """
        self._posterior = posterior
        self._sample_transform = sample_transform
        self._mean_transform = mean_transform
        self._variance_transform = variance_transform
    @property
    def base_sample_shape(self) -> torch.Size:
        r"""The shape of a base sample used for constructing posterior samples."""
        return self._posterior.base_sample_shape
    @property
    def batch_range(self) -> Tuple[int, int]:
        r"""The t-batch range.
        This is used in samplers to identify the t-batch component of the
        `base_sample_shape`. The base samples are expanded over the t-batches to
        provide consistency in the acquisition values, i.e., to ensure that a
        candidate produces same value regardless of its position on the t-batch.
        """
        return self._posterior.batch_range
    @property
    def device(self) -> torch.device:
        r"""The torch device of the posterior."""
        return self._posterior.device
    @property
    def dtype(self) -> torch.dtype:
        r"""The torch dtype of the posterior."""
        return self._posterior.dtype
    def _extended_shape(
        self, sample_shape: torch.Size = torch.Size()  # noqa: B008
    ) -> torch.Size:
        r"""Returns the shape of the samples produced by the posterior with
        the given `sample_shape`.
        NOTE: This assumes that the `sample_transform` does not change the
        shape of the samples.
        """
        return self._posterior._extended_shape(sample_shape=sample_shape)
    @property
    def mean(self) -> Tensor:
        r"""The mean of the posterior as a `batch_shape x n x m`-dim Tensor."""
        if self._mean_transform is None:
            raise NotImplementedError("No mean transform provided.")
        try:
            variance = self._posterior.variance
        except (NotImplementedError, AttributeError):
            variance = None
        return self._mean_transform(self._posterior.mean, variance)
    @property
    def variance(self) -> Tensor:
        r"""The variance of the posterior as a `batch_shape x n x m`-dim Tensor."""
        if self._variance_transform is None:
            raise NotImplementedError("No variance transform provided.")
        return self._variance_transform(self._posterior.mean, self._posterior.variance)
[docs]    def rsample_from_base_samples(
        self,
        sample_shape: torch.Size,
        base_samples: Tensor,
    ) -> Tensor:
        r"""Sample from the posterior (with gradients) using base samples.
        This is intended to be used with a sampler that produces the corresponding base
        samples, and enables acquisition optimization via Sample Average Approximation.
        Args:
            sample_shape: A `torch.Size` object specifying the sample shape. To
                draw `n` samples, set to `torch.Size([n])`. To draw `b` batches
                of `n` samples each, set to `torch.Size([b, n])`.
            base_samples: The base samples, obtained from the appropriate sampler.
                This is a tensor of shape `sample_shape x base_sample_shape`.
        Returns:
            Samples from the posterior, a tensor of shape
            `self._extended_shape(sample_shape=sample_shape)`.
        """
        samples = self._posterior.rsample_from_base_samples(
            sample_shape=sample_shape, base_samples=base_samples
        )
        return self._sample_transform(samples) 
[docs]    def rsample(
        self,
        sample_shape: Optional[torch.Size] = None,
    ) -> Tensor:
        r"""Sample from the posterior (with gradients).
        Args:
            sample_shape: A `torch.Size` object specifying the sample shape. To
                draw `n` samples, set to `torch.Size([n])`. To draw `b` batches
                of `n` samples each, set to `torch.Size([b, n])`.
        Returns:
            Samples from the posterior, a tensor of shape
            `self._extended_shape(sample_shape=sample_shape)`.
        """
        samples = self._posterior.rsample(sample_shape=sample_shape)
        return self._sample_transform(samples)