#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
r"""Objective Modules to be used with acquisition functions."""
from __future__ import annotations
import inspect
import warnings
from abc import ABC, abstractmethod
from typing import Callable, List, Optional, TYPE_CHECKING, Union
import torch
from botorch.exceptions.errors import BotorchTensorDimensionError, UnsupportedError
from botorch.models.model import Model
from botorch.models.transforms.outcome import Standardize
from botorch.posteriors.gpytorch import GPyTorchPosterior, scalarize_posterior
from botorch.sampling import IIDNormalSampler, MCSampler
from botorch.utils import apply_constraints
from gpytorch.distributions import MultitaskMultivariateNormal, MultivariateNormal
from linear_operator.operators.dense_linear_operator import to_linear_operator
from torch import Tensor
from torch.nn import Module
if TYPE_CHECKING:
    from botorch.posteriors.posterior import Posterior  # pragma: no cover
    from botorch.posteriors.posterior_list import PosteriorList  # pragma: no cover
class AcquisitionObjective(Module, ABC):
    r"""Abstract base class for objectives.
    DEPRECATED - This will be removed in the next version.
    :meta private:
    """
    ...
class PosteriorTransform(Module, ABC):
    r"""
    Abstract base class for objectives that transform the posterior.
    :meta private:
    """
    @abstractmethod
    def evaluate(self, Y: Tensor) -> Tensor:
        r"""Evaluate the transform on a set of outcomes.
        Args:
            Y: A `batch_shape x q x m`-dim tensor of outcomes.
        Returns:
            A `batch_shape x q' [x m']`-dim tensor of transformed outcomes.
        """
        pass  # pragma: no cover
    @abstractmethod
    def forward(self, posterior) -> Posterior:
        r"""Compute the transformed posterior.
        Args:
            posterior: The posterior to be transformed.
        Returns:
            The transformed posterior object.
        """
        pass  # pragma: no cover
# import DeterministicModel after PosteriorTransform to avoid circular import
from botorch.models.deterministic import DeterministicModel  # noqa
[docs]class ScalarizedPosteriorTransform(PosteriorTransform):
    r"""An affine posterior transform for scalarizing multi-output posteriors.
    For a Gaussian posterior at a single point (`q=1`) with mean `mu` and
    covariance matrix `Sigma`, this yields a single-output posterior with mean
    `weights^T * mu` and variance `weights^T Sigma w`.
    Example:
        Example for a model with two outcomes:
        >>> weights = torch.tensor([0.5, 0.25])
        >>> posterior_transform = ScalarizedPosteriorTransform(weights)
        >>> EI = ExpectedImprovement(
        ... model, best_f=0.1, posterior_transform=posterior_transform
        ... )
    """
    scalarize: bool = True
    def __init__(self, weights: Tensor, offset: float = 0.0) -> None:
        r"""
        Args:
            weights: A one-dimensional tensor with `m` elements representing the
                linear weights on the outputs.
            offset: An offset to be added to posterior mean.
        """
        if weights.dim() != 1:
            raise ValueError("weights must be a one-dimensional tensor.")
        super().__init__()
        self.register_buffer("weights", weights)
        self.offset = offset
[docs]    def evaluate(self, Y: Tensor) -> Tensor:
        r"""Evaluate the transform on a set of outcomes.
        Args:
            Y: A `batch_shape x q x m`-dim tensor of outcomes.
        Returns:
            A `batch_shape x q`-dim tensor of transformed outcomes.
        """
        return self.offset + Y @ self.weights 
[docs]    def forward(
        self, posterior: Union[GPyTorchPosterior, PosteriorList]
    ) -> GPyTorchPosterior:
        r"""Compute the posterior of the affine transformation.
        Args:
            posterior: A posterior with the same number of outputs as the
                elements in `self.weights`.
        Returns:
            A single-output posterior.
        """
        return scalarize_posterior(
            posterior=posterior, weights=self.weights, offset=self.offset
        )  
[docs]class ScalarizedObjective(ScalarizedPosteriorTransform, AcquisitionObjective):
    """DEPRECATED - Use ScalarizedPosteriorTransform instead."""
    def __init__(self, weights: Tensor, offset: float = 0.0) -> None:
        r"""
        Args:
            weights: A one-dimensional tensor with `m` elements representing the
                linear weights on the outputs.
            offset: An offset to be added to posterior mean.
        """
        warnings.warn(
            "ScalarizedObjective is deprecated and will be removed in the next "
            "version. Use ScalarizedPosteriorTransform instead."
        )
        super().__init__(weights=weights, offset=offset) 
[docs]class ExpectationPosteriorTransform(PosteriorTransform):
    r"""Transform the `batch x (q * n_w) x m` posterior into a `batch x q x m`
    posterior of the expectation. The expectation is calculated over each
    consecutive `n_w` block of points in the posterior.
    This is intended for use with `InputPerturbation` or `AppendFeatures` for
    optimizing the expectation over `n_w` points. This should not be used when
    there are constraints present, since this does not take into account
    the feasibility of the objectives.
    Note: This is different than `ScalarizedPosteriorTransform` in that
    this operates over the q-batch dimension.
    """
    def __init__(self, n_w: int, weights: Optional[Tensor] = None) -> None:
        r"""A posterior transform calculating the expectation over the q-batch
        dimension.
        Args:
            n_w: The number of points in the q-batch of the posterior to compute
                the expectation over. This corresponds to the size of the
                `feature_set` of `AppendFeatures` or the size of the `perturbation_set`
                of `InputPerturbation`.
            weights: An optional `n_w x m`-dim tensor of weights. Can be used to
                compute a weighted expectation. Weights are normalized before use.
        """
        super().__init__()
        if weights is not None:
            if weights.dim() != 2 or weights.shape[0] != n_w:
                raise ValueError("`weights` must be a tensor of size `n_w x m`.")
            if torch.any(weights < 0):
                raise ValueError("`weights` must be non-negative.")
        else:
            weights = torch.ones(n_w, 1)
        # Normalize the weights.
        weights = weights / weights.sum(dim=0)
        self.register_buffer("weights", weights)
        self.n_w = n_w
[docs]    def evaluate(self, Y: Tensor) -> Tensor:
        r"""Evaluate the expectation of a set of outcomes.
        Args:
            Y: A `batch_shape x (q * n_w) x m`-dim tensor of outcomes.
        Returns:
            A `batch_shape x q x m`-dim tensor of expectation outcomes.
        """
        batch_shape, m = Y.shape[:-2], Y.shape[-1]
        weighted_Y = Y.view(*batch_shape, -1, self.n_w, m) * self.weights.to(Y)
        return weighted_Y.sum(dim=-2) 
[docs]    def forward(self, posterior: GPyTorchPosterior) -> GPyTorchPosterior:
        r"""Compute the posterior of the expectation.
        Args:
            posterior: An `m`-outcome joint posterior over `q * n_w` points.
        Returns:
            An `m`-outcome joint posterior over `q` expectations.
        """
        org_mvn = posterior.distribution
        if getattr(org_mvn, "_interleaved", False):
            raise UnsupportedError(
                "`ExpectationPosteriorTransform` does not support "
                "interleaved posteriors."
            )
        # Initialize the weight matrix of shape compatible with the mvn.
        org_event_shape = org_mvn.event_shape
        batch_shape = org_mvn.batch_shape
        q = org_event_shape[0] // self.n_w
        m = 1 if len(org_event_shape) == 1 else org_event_shape[-1]
        tkwargs = {"device": org_mvn.loc.device, "dtype": org_mvn.loc.dtype}
        weights = torch.zeros(q * m, q * self.n_w * m, **tkwargs)
        # Make sure self.weights has the correct dtype/device and shape.
        self.weights = self.weights.to(org_mvn.loc).expand(self.n_w, m)
        # Fill in the non-zero entries of the weight matrix.
        # We want each row to have non-zero weights for the corresponding
        # `n_w` sized diagonal. The `m` outcomes are not interleaved.
        for i in range(q * m):
            weights[i, self.n_w * i : self.n_w * (i + 1)] = self.weights[:, i // q]
        # Trasform the mean.
        new_loc = (
            (weights @ org_mvn.loc.unsqueeze(-1))
            .view(*batch_shape, m, q)
            .transpose(-1, -2)
        )
        # Transform the covariance matrix.
        org_cov = (
            org_mvn.lazy_covariance_matrix
            if org_mvn.islazy
            else org_mvn.covariance_matrix
        )
        new_cov = weights @ (org_cov @ weights.t())
        if m == 1:
            new_mvn = MultivariateNormal(
                new_loc.squeeze(-1), to_linear_operator(new_cov)
            )
        else:
            # Using MTMVN since we pass a single loc and covar for all `m` outputs.
            new_mvn = MultitaskMultivariateNormal(
                new_loc, to_linear_operator(new_cov), interleaved=False
            )
        return GPyTorchPosterior(distribution=new_mvn)  
[docs]class UnstandardizePosteriorTransform(PosteriorTransform):
    r"""Posterior transform that unstandardizes the posterior.
    TODO: remove this when MultiTask models support outcome transforms.
    Example:
        >>> unstd_transform = UnstandardizePosteriorTransform(Y_mean, Y_std)
        >>> unstd_posterior = unstd_transform(posterior)
    """
    def __init__(self, Y_mean: Tensor, Y_std: Tensor) -> None:
        r"""Initialize objective.
        Args:
            Y_mean: `m`-dim tensor of outcome means
            Y_std: `m`-dim tensor of outcome standard deviations
        """
        if Y_mean.ndim > 1 or Y_std.ndim > 1:
            raise BotorchTensorDimensionError(
                "Y_mean and Y_std must both be 1-dimensional, but got "
                f"{Y_mean.ndim} and {Y_std.ndim}"
            )
        super().__init__()
        self.outcome_transform = Standardize(m=Y_mean.shape[0]).to(Y_mean)
        Y_std_unsqueezed = Y_std.unsqueeze(0)
        self.outcome_transform.means = Y_mean.unsqueeze(0)
        self.outcome_transform.stdvs = Y_std_unsqueezed
        self.outcome_transform._stdvs_sq = Y_std_unsqueezed.pow(2)
        self.outcome_transform.eval()
[docs]    def evaluate(self, Y: Tensor) -> Tensor:
        return self.outcome_transform.untransform(Y)[0] 
[docs]    def forward(self, posterior: GPyTorchPosterior) -> Tensor:
        return self.outcome_transform.untransform_posterior(posterior)  
class MCAcquisitionObjective(Module, ABC):
    r"""Abstract base class for MC-based objectives.
    Args:
        _verify_output_shape: If True and `X` is given, check that the q-batch
            shape of the objectives agrees with that of X.
        _is_mo: A boolean denoting whether the objectives are multi-output.
    :meta private:
    """
    _verify_output_shape: bool = True
    _is_mo: bool = False
    @abstractmethod
    def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor:
        r"""Evaluate the objective on the samples.
        Args:
            samples: A `sample_shape x batch_shape x q x m`-dim Tensors of
                samples from a model posterior.
            X: A `batch_shape x q x d`-dim tensor of inputs. Relevant only if
                the objective depends on the inputs explicitly.
        Returns:
            Tensor: A `sample_shape x batch_shape x q`-dim Tensor of objective
            values (assuming maximization).
        This method is usually not called directly, but via the objectives.
        Example:
            >>> # `__call__` method:
            >>> samples = sampler(posterior)
            >>> outcome = mc_obj(samples)
        """
        pass  # pragma: no cover
    def __call__(
        self, samples: Tensor, X: Optional[Tensor] = None, *args, **kwargs
    ) -> Tensor:
        output = super().__call__(samples=samples, X=X, *args, **kwargs)
        # q-batch dimension is at -1 for single-output objectives and at
        # -2 for multi-output objectives.
        q_batch_idx = -2 if self._is_mo else -1
        if (
            X is not None
            and self._verify_output_shape
            and output.shape[q_batch_idx] != X.shape[-2]
        ):
            raise RuntimeError(
                "The q-batch shape of the objective values does not agree with "
                f"the q-batch shape of X. Got {output.shape[q_batch_idx]} and "
                f"{X.shape[-2]}. This may happen if you used a one-to-many input "
                "transform but forgot to use a corresponding objective."
            )
        return output
[docs]class IdentityMCObjective(MCAcquisitionObjective):
    r"""Trivial objective extracting the last dimension.
    Example:
        >>> identity_objective = IdentityMCObjective()
        >>> samples = sampler(posterior)
        >>> objective = identity_objective(samples)
    """
[docs]    def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor:
        return samples.squeeze(-1)  
[docs]class LinearMCObjective(MCAcquisitionObjective):
    r"""Linear objective constructed from a weight tensor.
    For input `samples` and `mc_obj = LinearMCObjective(weights)`, this produces
    `mc_obj(samples) = sum_{i} weights[i] * samples[..., i]`
    Example:
        Example for a model with two outcomes:
        >>> weights = torch.tensor([0.75, 0.25])
        >>> linear_objective = LinearMCObjective(weights)
        >>> samples = sampler(posterior)
        >>> objective = linear_objective(samples)
    """
    def __init__(self, weights: Tensor) -> None:
        r"""
        Args:
            weights: A one-dimensional tensor with `m` elements representing the
                linear weights on the outputs.
        """
        super().__init__()
        if weights.dim() != 1:
            raise ValueError("weights must be a one-dimensional tensor.")
        self.register_buffer("weights", weights)
[docs]    def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor:
        r"""Evaluate the linear objective on the samples.
        Args:
            samples: A `sample_shape x batch_shape x q x m`-dim tensors of
                samples from a model posterior.
            X: A `batch_shape x q x d`-dim tensor of inputs. Relevant only if
                the objective depends on the inputs explicitly.
        Returns:
            A `sample_shape x batch_shape x q`-dim tensor of objective values.
        """
        if samples.shape[-1] != self.weights.shape[-1]:
            raise RuntimeError("Output shape of samples not equal to that of weights")
        return torch.einsum("...m, m", [samples, self.weights])  
[docs]class GenericMCObjective(MCAcquisitionObjective):
    r"""Objective generated from a generic callable.
    Allows to construct arbitrary MC-objective functions from a generic
    callable. In order to be able to use gradient-based acquisition function
    optimization it should be possible to backpropagate through the callable.
    Example:
        >>> generic_objective = GenericMCObjective(
                lambda Y, X: torch.sqrt(Y).sum(dim=-1),
            )
        >>> samples = sampler(posterior)
        >>> objective = generic_objective(samples)
    """
    def __init__(self, objective: Callable[[Tensor, Optional[Tensor]], Tensor]) -> None:
        r"""
        Args:
            objective: A callable `f(samples, X)` mapping a
                `sample_shape x batch-shape x q x m`-dim Tensor `samples` and
                an optional `batch-shape x q x d`-dim Tensor `X` to a
                `sample_shape x batch-shape x q`-dim Tensor of objective values.
        """
        super().__init__()
        if len(inspect.signature(objective).parameters) == 1:
            warnings.warn(
                "The `objective` callable of `GenericMCObjective` is expected to "
                "take two arguments. Passing a callable that expects a single "
                "argument will result in an error in future versions.",
                DeprecationWarning,
            )
            def obj(samples: Tensor, X: Optional[Tensor] = None) -> Tensor:
                return objective(samples)
            self.objective = obj
        else:
            self.objective = objective
[docs]    def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor:
        r"""Evaluate the feasibility-weigthed objective on the samples.
        Args:
            samples: A `sample_shape x batch_shape x q x m`-dim Tensors of
                samples from a model posterior.
            X: A `batch_shape x q x d`-dim tensor of inputs. Relevant only if
                the objective depends on the inputs explicitly.
        Returns:
            A `sample_shape x batch_shape x q`-dim Tensor of objective values
            weighted by feasibility (assuming maximization).
        """
        return self.objective(samples, X=X)  
[docs]class ConstrainedMCObjective(GenericMCObjective):
    r"""Feasibility-weighted objective.
    An Objective allowing to maximize some scalable objective on the model
    outputs subject to a number of constraints. Constraint feasibilty is
    approximated by a sigmoid function.
        mc_acq(X) = (
        (objective(X) + infeasible_cost) * \prod_i (1  - sigmoid(constraint_i(X)))
        ) - infeasible_cost
    See `botorch.utils.objective.apply_constraints` for details on the constraint
    handling.
    Example:
        >>> bound = 0.0
        >>> objective = lambda Y: Y[..., 0]
        >>> # apply non-negativity constraint on f(x)[1]
        >>> constraint = lambda Y: bound - Y[..., 1]
        >>> constrained_objective = ConstrainedMCObjective(objective, [constraint])
        >>> samples = sampler(posterior)
        >>> objective = constrained_objective(samples)
    """
    def __init__(
        self,
        objective: Callable[[Tensor, Optional[Tensor]], Tensor],
        constraints: List[Callable[[Tensor], Tensor]],
        infeasible_cost: Union[Tensor, float] = 0.0,
        eta: Union[Tensor, float] = 1e-3,
    ) -> None:
        r"""
        Args:
            objective: A callable `f(samples, X)` mapping a
                `sample_shape x batch-shape x q x m`-dim Tensor `samples` and
                an optional `batch-shape x q x d`-dim Tensor `X` to a
                `sample_shape x batch-shape x q`-dim Tensor of objective values.
            constraints: A list of callables, each mapping a Tensor of dimension
                `sample_shape x batch-shape x q x m` to a Tensor of dimension
                `sample_shape x batch-shape x q`, where negative values imply
                feasibility.
            infeasible_cost: The cost of a design if all associated samples are
                infeasible.
            eta: The temperature parameter of the sigmoid function approximating
                the constraint. Can be either a float or a 1-dim tensor. In case
                of a float the same eta is used for every constraint in
                constraints. In case of a tensor the length of the tensor must
                match the number of provided constraints. The i-th constraint is
                then estimated with the i-th eta value.
        """
        super().__init__(objective=objective)
        self.constraints = constraints
        if type(eta) != Tensor:
            eta = torch.full((len(constraints),), eta)
        self.register_buffer("eta", eta)
        self.register_buffer("infeasible_cost", torch.as_tensor(infeasible_cost))
[docs]    def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor:
        r"""Evaluate the feasibility-weighted objective on the samples.
        Args:
            samples: A `sample_shape x batch_shape x q x m`-dim Tensors of
                samples from a model posterior.
            X: A `batch_shape x q x d`-dim tensor of inputs. Relevant only if
                the objective depends on the inputs explicitly.
        Returns:
            A `sample_shape x batch_shape x q`-dim Tensor of objective values
            weighted by feasibility (assuming maximization).
        """
        obj = super().forward(samples=samples)
        return apply_constraints(
            obj=obj,
            constraints=self.constraints,
            samples=samples,
            infeasible_cost=self.infeasible_cost,
            eta=self.eta,
        )  
[docs]class LearnedObjective(MCAcquisitionObjective):
    r"""Learned preference objective constructed from a preference model.
    For input `samples`, it samples each individual sample again from the latent
    preference posterior distribution using `pref_model` and return the posterior mean.
    Example:
        >>> train_X = torch.rand(2, 2)
        >>> train_comps = torch.LongTensor([[0, 1]])
        >>> pref_model = PairwiseGP(train_X, train_comps)
        >>> learned_pref_obj = LearnedObjective(pref_model)
        >>> samples = sampler(posterior)
        >>> objective = learned_pref_obj(samples)
    """
    def __init__(
        self,
        pref_model: Model,
        sampler: Optional[MCSampler] = None,
    ):
        r"""
        Args:
            pref_model: A BoTorch model, which models the latent preference/utility
                function. Given an input tensor of size
                `sample_size x batch_shape x N x d`, its `posterior` method should
                return a `Posterior` object with single outcome representing the
                utility values of the input.
            sampler: Sampler for the preference model to account for uncertainty in
                preferece when calculating the objective; it's not the one used
                in MC acquisition functions. If None,
                it uses `IIDNormalSampler(sample_shape=torch.Size([1]))`.
        """
        super().__init__()
        self.pref_model = pref_model
        if isinstance(pref_model, DeterministicModel):
            assert sampler is None
            self.sampler = None
        else:
            if sampler is None:
                self.sampler = IIDNormalSampler(sample_shape=torch.Size([1]))
            else:
                self.sampler = sampler
[docs]    def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor:
        r"""Sample each element of samples.
        Args:
            samples: A `sample_size x batch_shape x N x d`-dim Tensors of
                samples from a model posterior.
        Returns:
            A `(sample_size * num_samples) x batch_shape x N`-dim Tensor of
            objective values sampled from utility posterior using `pref_model`.
        """
        post = self.pref_model.posterior(samples)
        if isinstance(self.pref_model, DeterministicModel):
            # return preference posterior mean
            return post.mean.squeeze(-1)
        else:
            # return preference posterior sample mean
            samples = self.sampler(post).squeeze(-1)
            return samples.reshape(-1, *samples.shape[2:])  # batch_shape x N