#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
r"""
Special implementations of mathematical functions that
solve numerical issues of naive implementations.
.. [Maechler2012accurate]
    M. Mächler. Accurately Computing log (1 - exp (-| a|))
        Assessed by the Rmpfr package. Technical report, 2012.
"""
from __future__ import annotations
import math
import torch
from botorch.utils.constants import get_constants_like
from torch import finfo, Tensor
_log2 = math.log(2)
# Unary ops
[docs]def exp(x: Tensor, **kwargs) -> Tensor:
    info = finfo(x.dtype)
    maxexp = get_constants_like(math.log(info.max) - 1e-4, x)
    return torch.exp(x.clip(max=maxexp), **kwargs) 
[docs]def log(x: Tensor, **kwargs) -> Tensor:
    info = finfo(x.dtype)
    return torch.log(x.clip(min=info.tiny), **kwargs) 
# Binary ops
[docs]def add(a: Tensor, b: Tensor, **kwargs) -> Tensor:
    _0 = get_constants_like(0, a)
    case = a.isinf() & b.isinf() & (a != b)
    return torch.where(case, _0, a + b) 
[docs]def sub(a: Tensor, b: Tensor) -> Tensor:
    _0 = get_constants_like(0, a)
    case = (a.isinf() & b.isinf()) & (a == b)
    return torch.where(case, _0, a - b) 
[docs]def div(a: Tensor, b: Tensor) -> Tensor:
    _0, _1 = get_constants_like(values=(0, 1), ref=a)
    case = ((a == _0) & (b == _0)) | (a.isinf() & a.isinf())
    return torch.where(case, torch.where(a != b, -_1, _1), a / torch.where(case, _1, b)) 
[docs]def mul(a: Tensor, b: Tensor) -> Tensor:
    _0 = get_constants_like(values=0, ref=a)
    case = (a.isinf() & (b == _0)) | (b.isinf() & (a == _0))
    return torch.where(case, _0, a * torch.where(case, _0, b)) 
[docs]def log1mexp(x: Tensor) -> Tensor:
    """Numerically accurate evaluation of log(1 - exp(x)) for x < 0.
    See [Maechler2012accurate]_ for details.
    """
    log2 = get_constants_like(values=_log2, ref=x)
    is_small = -log2 < x  # x < 0
    return torch.where(
        is_small,
        (-x.expm1()).log(),
        (-x.exp()).log1p(),
    ) 
[docs]def logdiffexp(log_a: Tensor, log_b: Tensor) -> Tensor:
    """Computes log(b - a) accurately given log(a) and log(b).
    Assumes, log_b > log_a, i.e. b > a > 0.
    Args:
        log_a (Tensor): The logarithm of a, assumed to be less than log_b.
        log_b (Tensor): The logarithm of b, assumed to be larger than log_a.
    Returns:
        A Tensor of values corresponding to log(b - a).
    """
    return log_b + log1mexp(log_a - log_b) 
[docs]def logmeanexp(X: Tensor, dim: int = -1) -> Tensor:
    """Computes log(mean(exp(X), dim=dim)).
    Args:
        X (Tensor): The logarithm of a, assumed to be less than log_b.
        dim (int): The dimension over which to compute the mean. Default is -1.
    Returns:
        A Tensor of values corresponding to log(mean(exp(X), dim=dim)).
    """
    return torch.logsumexp(X, dim=dim) - math.log(X.shape[dim])