Source code for botorch.acquisition.multi_objective.utils
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
r"""
Utilities for multi-objective acquisition functions.
"""
from __future__ import annotations
import math
import warnings
from typing import Callable, List, Optional
import torch
from botorch import settings
from botorch.acquisition import monte_carlo  # noqa F401
from botorch.acquisition.multi_objective.objective import (
    IdentityMCMultiOutputObjective,
    MCMultiOutputObjective,
)
from botorch.exceptions.errors import UnsupportedError
from botorch.exceptions.warnings import BotorchWarning, SamplingWarning
from botorch.models.fully_bayesian import MCMC_DIM
from botorch.models.model import Model
from botorch.sampling.samplers import IIDNormalSampler, SobolQMCNormalSampler
from botorch.utils.multi_objective.pareto import is_non_dominated
from botorch.utils.transforms import is_fully_bayesian, normalize_indices
from torch import Tensor
from torch.quasirandom import SobolEngine
[docs]def get_default_partitioning_alpha(num_objectives: int) -> float:
    r"""Determines an approximation level based on the number of objectives.
    If `alpha` is 0, FastNondominatedPartitioning should be used. Otherwise,
    an approximate NondominatedPartitioning should be used with approximation
    level `alpha`.
    Args:
        num_objectives: the number of objectives.
    Returns:
        The approximation level `alpha`.
    """
    if num_objectives <= 4:
        return 0.0
    elif num_objectives > 6:
        warnings.warn("EHVI works best for less than 7 objectives.", BotorchWarning)
    return 10 ** (-8 + num_objectives) 
[docs]def prune_inferior_points_multi_objective(
    model: Model,
    X: Tensor,
    ref_point: Tensor,
    objective: Optional[MCMultiOutputObjective] = None,
    constraints: Optional[List[Callable[[Tensor], Tensor]]] = None,
    num_samples: int = 2048,
    max_frac: float = 1.0,
    marginalize_dim: Optional[int] = None,
) -> Tensor:
    r"""Prune points from an input tensor that are unlikely to be pareto optimal.
    Given a model, an objective, and an input tensor `X`, this function returns
    the subset of points in `X` that have some probability of being pareto
    optimal, better than the reference point, and feasible. This function uses
    sampling to estimate the probabilities, the higher the number of points `n`
    in `X` the higher the number of samples `num_samples` should be to obtain
    accurate estimates.
    Args:
        model: A fitted model. Batched models are currently not supported.
        X: An input tensor of shape `n x d`. Batched inputs are currently not
            supported.
        ref_point: The reference point.
        objective: The objective under which to evaluate the posterior.
        constraints: A list of callables, each mapping a Tensor of dimension
            `sample_shape x batch-shape x q x m` to a Tensor of dimension
            `sample_shape x batch-shape x q`, where negative values imply
            feasibility.
        num_samples: The number of samples used to compute empirical
            probabilities of being the best point.
        max_frac: The maximum fraction of points to retain. Must satisfy
            `0 < max_frac <= 1`. Ensures that the number of elements in the
            returned tensor does not exceed `ceil(max_frac * n)`.
        marginalize_dim: A batch dimension that should be marginalized.
            For example, this is useful when using a batched fully Bayesian
            model.
    Returns:
        A `n' x d` with subset of points in `X`, where
            n' = min(N_nz, ceil(max_frac * n))
        with `N_nz` the number of points in `X` that have non-zero (empirical,
        under `num_samples` samples) probability of being pareto optimal.
    """
    if marginalize_dim is None and is_fully_bayesian(model):
        # TODO: Properly deal with marginalizing fully Bayesian models
        marginalize_dim = MCMC_DIM
    if X.ndim > 2:
        # TODO: support batched inputs (req. dealing with ragged tensors)
        raise UnsupportedError(
            "Batched inputs `X` are currently unsupported by "
            "prune_inferior_points_multi_objective"
        )
    max_points = math.ceil(max_frac * X.size(-2))
    if max_points < 1 or max_points > X.size(-2):
        raise ValueError(f"max_frac must take values in (0, 1], is {max_frac}")
    with torch.no_grad():
        posterior = model.posterior(X=X)
    if posterior.event_shape.numel() > SobolEngine.MAXDIM:
        if settings.debug.on():
            warnings.warn(
                f"Sample dimension q*m={posterior.event_shape.numel()} exceeding Sobol "
                f"max dimension ({SobolEngine.MAXDIM}). Using iid samples instead.",
                SamplingWarning,
            )
        sampler = IIDNormalSampler(num_samples=num_samples)
    else:
        sampler = SobolQMCNormalSampler(num_samples=num_samples)
    samples = sampler(posterior)
    if objective is None:
        objective = IdentityMCMultiOutputObjective()
    obj_vals = objective(samples, X=X)
    if obj_vals.ndim > 3:
        if obj_vals.ndim == 4 and marginalize_dim is not None:
            obj_vals = obj_vals.mean(dim=marginalize_dim)
        else:
            # TODO: support batched inputs (req. dealing with ragged tensors)
            raise UnsupportedError(
                "Models with multiple batch dims are currently unsupported by"
                " prune_inferior_points_multi_objective."
            )
    if constraints is not None:
        infeas = torch.stack([c(samples) > 0 for c in constraints], dim=0).any(dim=0)
        if infeas.ndim == 3 and marginalize_dim is not None:
            # make sure marginalize_dim is not negative
            if marginalize_dim < 0:
                # add 1 to the normalize marginalize_dim since we have already
                # removed the output dim
                marginalize_dim = (
                    1 + normalize_indices([marginalize_dim], d=infeas.ndim)[0]
                )
            infeas = infeas.float().mean(dim=marginalize_dim).round().bool()
        # set infeasible points to be the ref point
        obj_vals[infeas] = ref_point
    pareto_mask = is_non_dominated(obj_vals, deduplicate=False) & (
        obj_vals > ref_point
    ).all(dim=-1)
    probs = pareto_mask.to(dtype=X.dtype).mean(dim=0)
    idcs = probs.nonzero().view(-1)
    if idcs.shape[0] > max_points:
        counts, order_idcs = torch.sort(probs, descending=True)
        idcs = order_idcs[:max_points]
    effective_n_w = obj_vals.shape[-2] // X.shape[-2]
    idcs = (idcs / effective_n_w).long().unique()
    return X[idcs]